
Testing Physics-Informed Neural Networks for the
Solution of Hyperbolic Conservation Laws

Leon Jakobi∗ Simon Krotsch†

July 15, 2024

Abstract. This report investigates the applicability of physics-informed neural networks
(PINNs) for the solution of one-dimensional systems of hyperbolic conservation laws. Unlike
traditional numerical methods that discretize the governing equations, PINNs integrate the
physical laws directly into the neural network training process, utilizing its ability to learn
complex patterns from data while respecting the underlying physical model. Using three ex-
ample problems, we demonstrate the accuracy of PINNs in capturing the motion of different
types of waves (both smooth and discontinuous) which are characteristic for hyperbolic sys-
tems. Time and accuracy comparisons are made with more traditional finite-difference and
finite-volume approaches. Our results give insight into the potential of PINNs as a tool for
solving hyperbolic conservation laws, highlighting both their strengths and their limitations.

1 Introduction

The goal of this text is to investigate the applicability of physics-informed neural
networks for the solution of a one-dimensional systems of hyperbolic conservation
laws

qt ` fpqqx “ 0

without source term. Here px, tq ÞÑ qpx, tq is the quantity and q ÞÑ fpqq the flux
function. The indices denote differentiation. In section 2, we give a quick introduction
to conservation laws, focusing on their derivation, some theoretical results and three
concrete examples of conservation laws. These will be used in section 3 for numerical
tests. Whenever exact solutions are not available, we will rely on finite-difference and
finite-volume methods to provide sufficiently good approximations to the true solution.
This will also allow us to compare the speed and accuracy of PINNs with these more
established schemes.

2 Conservation Laws

In this section our goal is to give a quick introduction to an important class of dif-
ferential equations: conservation laws. Such models arise in many different practical
applications, most famously in fluid mechanics, making their solution all the more
important. In subsection 2.1 we briefly discuss their origin and define what it means
for such an equation to be hyperbolic. Subsection 2.2 introduces the theoretical treat-
ment of conservation laws and gives some insight into their existence theory. For the
numerical simulations of section 3 we will study three concrete examples: the simplest

∗leon.jakobi@stud-mail.uni-wuerzburg.de
†simon.krotsch@stud-mail.uni-wuerzburg.de

1

mailto:leon.jakobi@stud-mail.uni-wuerzburg.de
mailto:simon.krotsch@stud-mail.uni-wuerzburg.de

conservation law (linear advection), the simplest nonlinear conservation law (Burg-
ers’ equation) and one of the simpler practically-relevant models (the shallow-water
equations) which is a nonlinear system. These are described in subsection 2.3.

2.1 Derivation of Conservation Laws

On a surface level subjects like physics, chemistry and biology appear mostly unrelated.
On a mathematical level, however, their models often show similarities. One very
common class of differential equations that appear frequently are conservation laws.
This subsection explains their origin and is based on [13].

When conservation laws appear in practice some sort of balance law is always
involved. To this end, consider some fixed region Ω Ď R3 and in it some quantity
with a density or concentration q which is itself a scalar-valued function of space
x “ px, y, zqT P R3 (this notation looks a bit irritating at first, but it is standard in
fields like fluid dynamics) and time time t ą 0. What happens to the quantity inside
of Ω as time passes? Typically one has the following relation:

time rate of change of quantity “ rate at which quantity flows into Ω

´ rate at which quantity flows out of Ω

` rate at which quantity is produced in Ω

´ rate at which quantity is destroyed in Ω.

(2.1)

To illustrate this, consider an example from population biology. If the quantity cor-
responds to the population size of some species (e. g. foxes) in a fixed area Ω (e. g.
Germany), then (2.1) can be formulated as

rate of population change “ immigration rate ´ emigration rate

` birth rate ´ death rate.

The natural mathematical way to phrase (2.1) is via integrals over the region Ω and
its boundary BΩ. The total quantity inside of Ω is given via the volume integral

ż

Ω

qpx, tq dx.

Notice that this is a function that varies only with time. Its derivative corresponds to
the left side of (2.1).

The inflow and outflow can be combined into one net term, if we introduce a flux
function px, tq ÞÑ fpx, tq. Its components correspond to the amount of the quantity
q flowing through the surface BΩ at the point x on the surface and time t per unit
area and per unit time in the component’s direction. By convention, we will say that
a component of the flux function is positive, if the flow is out of the surface, and
negative, if it is into the surface. This way the integral

´

ż

BΩ

fpx, tq ¨ npxq ds (2.2)

subsumes the first two terms on the right side of (2.1). Here npxq is the unit normal
vector on x P BΩ pointing out of Ω and the dot ¨ represents the Euclidean inner product
in R3. The minus sign is due to the outward-facing direction of n.

2

The production and destruction can be handled in somewhat the same way with
a scalar-valued source function pq, x, tq ÞÑ ψpq, x, tq. Notice that ψ can generally vary
with the quantity q. If the source function is positive, we speak of a source, and if it
is negative, we speak of a sink. The last two terms on the right side of (2.1) can then
be represented as

ż

Ω

ψpqpx, tq, x, tq dx.

If we use the divergence theorem to transform the surface integral (2.2) into a volume
integral, we can state (2.1) as

d

dt

ˆ
ż

Ω

qpx, tq dx

˙

“ ´

ż

Ω

∇ ¨ fpx, tq dx `

ż

Ω

ψpqpx, tq, x, tq dx. (2.3)

In the case where q is a sufficiently smooth function, the derivative on the left may
be pulled into the integral. And since Ω is an arbitrary region, the smoothness of the
involved functions would imply the differential equation

qt ` ∇ ¨ fpx, tq “ ψpq, x, tq.

Here and in the following, indices are supposed to signal differentiation, e. g. pqt :“ B{Bt.
The unknowns in the equation above are q and f while ψ is given. However, in many
applications it is possible to write f as a function of q directly. Notice that this is
a special case of the form above since q itself depends on px, tq. In said case the
differential equation becomes

qt ` ∇ ¨ fpqq “ ψpq, x, tq (2.4)

or
qt ` fpqqx ` gpqqy ` hpqqz “ ψpq, x, tq (2.5)

by writing out the divergence operator∇¨ “ pB{Bx, B{By, B{BzqT and using the notation
f “ pf, g, hqT for the components. The corresponding formulation of (2.3) is

ż

Ω

qtpx, tq ` ∇ ¨ f
`

qpx, tq
˘

dx “

ż

Ω

ψpqpx, tq, x, tq dx. (2.6)

Equations (2.6) and (2.4) are the integral and differential form of a conservation law.
The unknown function here is q while f and ψ are known. We note that if one is
given several conservation laws at the same time, then they can be combined into a
vectorized version of (2.5) via

qt ` fpqqx ` gpqqy ` hpqqz “ ψpq, x, tq. (2.7)

Here q is a vector of conserved quantities; f , g and ψ are defined accordingly, so that
each component of (2.7) corresponds to one of the given conservation laws.

Notice that only the case where the source term vanishes is a proper conservation
in the colloquial sense. Consequently, equations with a non-trivial ψ are sometimes
referred to as balance laws instead. Throughout this text, we will only consider models
without a source term.

3

Next up, we want to introduce what it means for the one-dimensional conservation
law

qtpx, tq ` f
`

qpx, tq
˘

x
“ ψpqpx, tq, xq for all px, tq P R ˆ s0,8r , (2.8)

to be hyperbolic. We will only study the one-dimensional case in this text. However,
a suitable generalization for several dimensions exists. We begin with a linear system
of conservation laws

qt ` Aqx “ ψpq, xq (2.9)

for some function q : Rˆ s0,8r Ñ Rm and a constant matrix A P Rmˆm. In this case,
we say that (2.9) is hyperbolic, if A is diagonalizable with real eigenvalues. If we were
instead given a quasilinear system of conservation laws

qt ` Apq, x, tqqx “ ψpq, xq, (2.10)

then we say that (2.10) is hyperbolic, if the variable matrix Apq, x, tq P Rmˆm is
diagonalizable with real eigenvalues at every point pq, x, tq. To define hyperbolicity for
(2.8), we carry out the derivative in terms of x with the chain rule to find

qt ` f 1
pqqqx “ ψpq, xq, (2.11)

which is valid, if q is smooth. Here

f 1
“

¨

˚

˚

˚

˚

˝

Bf1
Bq1

Bf1
Bq2

. . .
Bf1
Bqm

...
...

. . .
...

Bfm
Bq1

Bfm
Bq2

. . .
Bfm
Bqm

˛

‹

‹

‹

‹

‚

P Rmˆm

is the Jacobian matrix of f “ pf1, f2, . . . , fmqT for q “ pq1, q2, . . . , qmqT. Hence (2.11)
is a quasilinear system. We will say that (2.8) is hyperbolic, if (2.11) is hyperbolic for
each (physically-relevant) value of q.

2.2 Existence Theory for One-Dimensional
Conservation Laws

In this subsection we want to give some insight into the existence theory of one-
dimensional systems of conservation laws without a source term. We start by in-
troducing a method to construct solutions for the initial value problem for scalar
one-dimensional conservation laws in 2.2.1. After that 2.2.2 introduces an appropriate
notion of weak solution. Finally 2.2.3 presents some existence results.

Let Ω Ď Rm be open (m P N). Here we assume that the flux function f : Ω Ñ Rm is
sufficiently smooth. Then the the one-dimensional system of conservation laws without
a source term is

qt ` fpqqx “ 0, (2.12)

where x P R, t ą 0 and q : R ˆ R` Ñ Ω is a vector-valued function. Here and in
the following we set R` :“ tx P R | x ě 0u. Recall that (2.12) is called hyperbolic,
if its Jacobian matrix f 1 has m real eigenvalues for all q P Ω. If the eigenvalues are
also distinct, we call (2.12) strictly hyperbolic. In this text we want to study the initial

4

value problem (IVP) for (2.12). It is defined as follows: We want to find a function
q : R ˆ R` Ñ Ω that satisfies (2.12) and the so-called initial condition

qpx, 0q “ q0pxq

for all x P R, where q0 : R Ñ R is some given function. These definitions and the next
part of this subsection are based on [10].

2.2.1 Method of Characteristics

We start our investigation of the existence of solutions with the initial value problem
for the scalar one-dimensional conservation law. In that case Ω is an open subset of R
and the flux function f a smooth function from Ω into R. The initial value problem
for the scalar case is to find a function q : R ˆ R` Ñ Ω that satisfies

qt ` fpqqx “ 0 (2.13)

for all x P R, t ą 0 and
qpx, 0q “ q0pxq (2.14)

for all x P R. Once again q0 : R Ñ R is some given function. We can transform (2.13)
to

qt ` f 1
pqqqx “ 0

by using the chain rule.

Definition 2.1 The curves define by pxptq, tq, where xptq is a solution of the ordinary
differential equation

d

dt
xptq “ f 1

`

qpxptq, tq
˘

,

are called characteristic curves.

Suppose the solution q of the initial value problem of (2.13) is continuously differen-
tiable. Let x0 P R, then the characteristic curve through the point px0, 0q is defined
by pxptq, tq, where xptq is a solution of the initial value problem

d

dt
xptq “ f 1

`

qpxptq, tq
˘

, xp0q “ x0.

From the theory of ordinary differential equations we know the solution of that problem
exists at least in some small neighborhood of t “ 0. By the chain rule we obtain

d

dt
qpxptq, tq “

B

Bt
qpxptq, tq `

B

Bx
qpxptq, tq

d

dt
xptq

“
B

Bt
qpxptq, tq ` f 1

puq
B

Bx
qpxptq, tq

“ 0,

since q satisfies (2.13). Hence q is constant along characteristic curves. Furthermore
xptq is defined by

d

dt
xptq “ f 1

`

qpx0, 0q
˘

“ f 1
`

q0px0q
˘

,

5

so xptq is a linear function and the characteristic curve is a straight line in the x-t-
plane. With the condition xp0q “ x0 we get that the characteristic curve through the
point px0, 0q is defined by the curve pxptq, tq that obeys

xptq “ x0 ` tf 1
`

q0px0q
˘

.

We have hereby proven the following result.

Lemma 2.2 Suppose the solution of the initial value problem for (2.13) is continuously
differentiable, then the characteristic curves are straight lines along which the solution
is constant. The slope of the characteristic curves depends only on the initial data q0.

We can use our findings to construct continuously differentiable solutions of the initial
value problem for (2.13). It follows directly that the the value of a solution q at the
point px, tq P R ˆ R` is defined by

qpx, tq “ q0px
˚
q,

where x˚ is the solution of
x “ x˚

` tf 1
`

q0px˚q
˘

.

Since we assumed that q is continuously differentiable, the same thing must hold for
the initial data q0.

This method for constructing continuously differentiable solutions is called the
method of characteristics. One might think at this point that it allows us to construct
solutions without restriction. But that would require that solutions of the initial
value problem for (2.13) are continuously differentiable for all points px, tq P R ˆ R`.
Unfortunately, this is not always the case. Suppose q is a continuously differentiable
solution of the initial value problem for (2.13) defined for all points px, tq P R ˆ R`.
Also assume we have two points x1, x2 P R with x1 ă x2 and

f 1
`

q0px1q
˘

ą f 1
`

q0px2q
˘

. (2.15)

Let C1 :“ tpx1ptq, tq | t ě 0u be the characteristic curve through the point px1, 0q and
C2 :“ tpx2ptq, tq | t ě 0u the characteristic curve trough px2, 0q, then x1ptq and x2ptq
are defined by

x1ptq “ x1 ` tf 1
`

q0px1q
˘

,

x2ptq “ x2 ` tf 1
`

q0px2q
˘

.

From (2.15) it follows that C2 and C1 have to intersect at some point after finite
time. At the point where the two meet, the solution q should take the values q0px1q
and q0px2q. If q0px1q ‰ q0px2q this is not possible, if q is supposed to be a single-
valued function. So the continuously differentiable solution q cannot be defined at
this point. As we can see, the method of characteristics sometimes only allows us to
construct continuously differentiable solution of the initial value problem for (2.13) up
to some finite time and thereby we are only able show the existence of continuously
differentiable solution up to this finite time. The next result shows how this time may
be calculated.

6

Theorem 2.3 Suppose q0 and f 1 are sufficiently smooth and let

t˚ :“ min
xPR

d

dx
f 1
`

q0pxq
˘

.

Then there are three cases:

(a) If t˚ ě 0, i. e., the function f 1
`

q0pxq
˘

is monotonically increasing, then a con-
tinuously differentiable solution of the initial value problem for (2.13) exists and
can be constructed by the method of characteristic for all times t ą 0.

(b) If t˚ P R and t˚ ă 0, then a continuously differentiable solution of the initial value
problem for (2.13) exists and can be constructed by the method of characteristics
up to the time

T ˚ :“ ´
1

t˚
.

(c) If t˚ does not exist, then there is no continuously differentiable solution of the
initial value problem for (2.13).

If the solution exists, it is implicitly given by

qpx, tq “ u0px
˚
q, x˚

“ x ´ tf 1
`

q0px˚
q
˘

.

Proof: We have already shown that if a continuously differentiable solution of the
initial value problem for (2.13) exists up to some time, it can be constructed by the
method of characteristics, since the characteristics do not cross. So the solution is
given by

qpx, tq “ u0px
˚
q, x˚

“ x ´ tf 1
`

q0px
˚
q
˘

.

All that remains to be demonstrated is that in case (a) the characteristic curves do
not cross for any time, in case (b) that they cross after some finite time and in case
(c) that the characteristic curves cross arbitrarily close to the time t “ 0.

View px1, 0q and px2, 0q, where x1, x2 P R are two arbitrary points. Without loss of
generality we can assume x1 ă x2. Let C1 :“ tpx1ptq, tq | t ě 0u and C2 :“ tpx2ptq, tq |

t ě 0u be the characteristic curves through x1 and x2 respectively. The curves C1 and
C2 cross, if

x1 ` tf 1
`

q0px1q
˘

“ x2 ` tf 1
`

q0px2q
˘

.

This is equivalent to

t
“

f 1
`

q0px1q
˘

´ f 1
`

q0px2q
˘‰

“ x2 ´ x1. (2.16)

In the case (a) where the function f 1
`

q0pxq
˘

is monotonically increasing we get

f 1
`

q0px1q
˘

´ f 1
`

q0px2q
˘

ď 0

for any x1, x2 P R with x1 ă x2 and

x2 ´ x1 ą 0.

7

So there cannot be any t ě 0 that solves the equation (2.16). So the characteristics
do not cross at any time t ě 0. This proves (a).

We can assume that t ą 0. If t “ 0, then (2.16) only has a solution if x2 “ x1. So
at t “ 0 the curves C1 and C2 do not cross. With t ‰ 0 equation (2.16) becomes

´
1

t
“
f 1
`

q0px2q
˘

´ f 1
`

q0px1q
˘

x2 ´ x1
. (2.17)

Let t˚ P R and t˚ ă 0 and assume T ˚ is not the smallest time at which two character-
istic curves cross. So there is a T 1 ă T ˚, which solves (2.16) and so (2.17). This leads
to

´
1

T 1
“
f 1
`

q0px2q
˘

´ f 1
`

q0px1q
˘

x2 ´ x1
.

By the mean value theorem, there is a ξ P R such that

f 1
`

q0px2q
˘

´ f 1
`

q0px1q
˘

x2 ´ x1
“

d

dx
f 1
`

q0pξq
˘

.

Since we have

´
1

T 1
ă ´

1

T ˚

this implies
d

dx
f 1
`

q0pξq
˘

ă t˚ “ min
xPR

d

dx
f 1
`

q0pξq
˘

.

Which is a contradiction to our assumption. So T ˚ is the smallest time at which
two characteristic curves intersect. This mean up to T ˚ we can construct a continu-
ously differentiable solution of the initial value problem for (2.13) by the method of
characteristics and thereby we have proven (b).

Now we suppose that t˚ does not exist, then for all T ˚ ą 0 there are always
x1, x2 P R, such that the characteristics through px1, 0q and px2, 0q cross before T ˚,
since there is a sequence pxnq such that

d

dx
f 1
`

q0pxnq
˘

Ñ ´8

as n Ñ 8. This shows (c). ■

2.2.2 Weak Solutions

We have seen that in general a continuously differentiable solution of the initial value
problem for (2.12) does not exists for all t ą 0. Depending on the equation we can
only get a continuously differentiable solution in a very small time interval. So if we
want to define solutions in general for all t ą 0 we need a new notion of solution, which
allows for discontinuities. This part is based on [10] and [16].

Definition 2.4 Let C1
0pRˆR`;Rmq be the space of all functions g P C1pR2;Rmq with

compact support in R ˆ R`.

8

To clarify, a function ϕ P C1
0pR ˆ R`;Rmq is the restriction to R ˆ R` of a function

in C1pR2;Rmq with compact support in an open set containing R ˆ R`. Let q0 P

L8
locpR;Rmq, where L8

locpR;Rmq is the space of locally bounded measurable functions.
Now assume q is a continuously differentiable solution of the initial value problem for
(2.12). Let ϕ P C1

0pR ˆ R`;Rmq. We then multiply (2.12) with ϕ and integrate over
R ˆ R`. This gives

ż

R

ż 8

0

pqt ` fpqqxq ¨ ϕ dtdx “ 0.

The dot ¨ denotes the Euclidean inner product on Rm. We can use integration by parts
to obtain

0 “

ż

R

ż 8

0

pqt ` fpqqxq ¨ ϕ dtdx

“ ´

ż

R

ż 8

0

q ¨ ϕt dtdx ´

ż

R

ż 8

0

fpqq ¨ ϕx dtdx ´

ż

R
q ¨ ϕ dx

ˇ

ˇ

ˇ

t“0
.

With the initial condition qpx, 0q “ q0pxq we get
ż

R

ż 8

0

q ¨ ϕt ` fpqq ¨ ϕx dtdx `

ż

R
q0 ¨ ϕpx, 0q dx “ 0. (2.18)

This equation makes sense even if q is not continuously differentiable. We just need
q P L8

locpR ˆ R`;Rmq. This enables us to generalise solutions as follows.

Definition 2.5 Let q0 P L8
locpR;Rmq. We call a function q P L8

locpRˆR`;Rmq a weak
solution of the initial value problem for (2.12) if qpx, tq P Ω almost everywhere and q
satisfies (2.18) for all ϕ P C1

0pR ˆ R`;Rmq.

The next theorem gives some insight into the connection between weak solutions and
classical solutions, i. e. continuously differentiable solutions of the initial value problem
for (2.12).

Theorem 2.6 A continuously differentiable function q is a classical solution of the
initial value problem for (2.12) if and only if q is a weak solution.

Proof: A classical solution of the initial value problem for (2.12) is a weak solution.
That follows directly from the construction of (2.18).

Now let q : RˆR` Ñ Ω be a continuously differentiable weak solution of the initial
value problem for (2.12). Let ϕ P C1

0pR ˆ s0,8r ;Rmq, then if we do the construction
of (2.18) backwards we get

ż

R

ż 8

0

`

qt ` fpqqx
˘

¨ ϕ dtdx “ 0

because ϕpx, 0q “ 0. Since this holds for all ϕ P C1
0pR ˆ s0,8r ;Rmq, we obtain

qt ` fpqqx “ 0 (2.19)

for all px, tq P R ˆ s0,8r. So q satisfies (2.12). We need to show that qpx, 0q “ q0pxq

for all x P R. To do this we can multiply (2.19) by a function ϕ P C1
0pR ˆ R`;Rmq

and again proceed like in the construction of weak solution to find
ż

R

ż 8

0

q ¨ ϕt ` fpqq ¨ ϕx dtdx `

ż

R
qpx, 0q ¨ ϕpx, 0q dx “ 0.

9

Comparing this with (2.18) gives us

ż 8

´8

`

qpx, 0q ´ q0pxq
˘

¨ ϕpx, 0q dx “ 0.

Again this holds for all ϕ P C1
0pR ˆ R`;Rmq. Thus qpx, 0q “ q0pxq for all x P R, so q

is a classical solution of the initial value problem for (2.12). ■

We will end our study of weak solutions here, since we do not want to shift the focus
of this text too far away from the numerical side. One can find more results in [16] or
[10].

2.2.3 Existence Results

After introducing weak solutions it is natural to ask if there are any existence results
for weak solutions of the initial value problem for (2.12). We want to present some
results for the initial value problem for one-dimensional systems of conservation laws.
First we take a look at the Riemann problem for (2.12). Let ql, qr P Ω. The initial
value problem for (2.12) with the initial data

q0pxq “

#

ql if x ă 0

qr if x ą 0
(2.20)

is called the Riemann problem. From now on we assume that (2.12) is strictly hyper-
bolic, so the Jacobian matrix f 1pqq of f has m real and distinct eigenvalues λ1pqq ă

. . . ă λmpqq for all q P Ω. Corresponding to each eigenvalue we have a right eigenvector
rkpqq P Rm defined by

f 1
pqqrkpqq “ λkpqqrkpqq

and a left eigenvector ℓkpqq P Rm defined by

ℓkpqqTf 1
pqq “ λkpuqℓkpuq

T

for all k P t1, . . . ,mu.

Definition 2.7 Let k P t1, . . . ,mu. The pair
`

λkpqq, rkpqq
˘

is called the k-th charac-
teristic field.

Definition 2.8 The k-th characteristic field
`

λkpqq, rkpqq
˘

is called genuinely nonlinear
if

∇λkpqq ¨ rkpqq ‰ 0

for all q P Ω. If
∇λkpuq ¨ rkpuq “ 0

for all q P Ω, then we say the k-th characteristic field is linearly degenerated.

These definitions are needed to state the following local existence result for the Rie-
mann problem for (2.12).

10

Theorem 2.9 Suppose for all k P t1, . . . ,mu the k-th characteristic field is either
genuinely nonlinear or linearly degenerated. Let ql P Ω, then there exists a neigborhood
N Ď Ω of ql, such that if qr P N , then the Riemann problem for (2.12) with initial
data

q0pxq “

#

ql if x ă 0

qr if x ą 0

has a solution.

The proof of this theorem requires some further investigations into some theoretical
aspects surrounding conservation laws. The last part was again based on [10] and [16],
in which the reader can find the complete proof of the theorem. In these references the
theorem also gives insight into the structure of the solution and states that a solution
of this structure is unique. Based on this theorem James Glimm found a way to
construct weak solution to an arbitrary initial value problem for (2.12) under some
conditions on the initial data.

For the next part we need to define the total variation of a function. It measures
the oscillatory behavior of a given function.

Definition 2.10 Let V Ď Rp with p P N and g P L1pVq, then

T.Vpg,Vq :“ sup
||ϕ||ď1

ż

V
gpxq div ϕpxqdx

where ϕ P C1
0pV ;Rpq.

The definition is from [8]. The general idea is that if the L8-norm of the initial data is
small and it has small total variation then we can approximate the solutions with local
Riemann problems. Therefore we define a mesh and approximate the initial data by
a piecewise constant function on this mesh. If the constant values of these functions
are close enough we can solve Riemann problems in some small time interval. Then
we can again approximate the solutions of the Riemann problems at the end of the
time interval by a piecewise constant function and do the same thing again. So we
can get an approximate solution for all time. If we let our mesh width go to zero,
the obtained approximate solution converges to a weak solution of the initial value
problem for (2.12). The proof consists of two main parts. First it has to be ensured
that we can solve the local Riemann problems for all time. That means the values
of the piecewise constant functions need to be near each other. Secondly we need to
show that the approximate solution does indeed converge to a weak solution. If this
is done, we obtain the following theorem.

Theorem 2.11 Let (2.12) be strictly hyperbolic and genuinely nonlinear in each char-
acteristic field. There exist constants C1, C2 ą 0 such that if

(a) ||q0||8 ď C1

(b) T.Vpq0,Rq ď C2,

then a weak solution of the initial value problem for (2.12) exists for all time.

11

Again we omitted some parts of the theorem, they together with the detailed proof
can be found in the original paper of James Glimm [9]. Proofs of the existence
theorem in a somewhat simpler form are also contained in [16] and [6]. At the end
of this subsection we want to note that there exist stronger results for the special
case of scalar one-dimensional conservation laws. For more details we refer to [7] and
[10]. But the general statement is that if the flux function f is smooth and uniformly
convex, then there exists a weak solution of the initial value problem (2.13). In this
case we call a weak solution q an entropy solution if

upx ` z, tq ´ upx, tq ď C

ˆ

1 `
1

t

˙

z

holds for some constant C ě 0 and for almost all x, z P R and t ą 0 with z ą 0. It
can be shown that for the initial value problem for the scalar conservation laws (2.13)
a unique entropy solution exists.

2.3 Three Model Conservation Laws

In this subsection we list three very common hyperbolic conservation laws. They
will serve as the test cases for the numerical experiments later on. More details and
derivations for all of the following differential equations can be found in the book [13]
by Logan.

2.3.1 Linear Advection

Just about the simplest possible conservation law is the linear advection equation

ut ` aux “ 0 (2.21)

where a P R is some constant (preferably with a ‰ 0) and px, tq ÞÑ upx, tq is the
unknown function. In terms of the conservation law framework we have q :“ u,
fpqq :“ aq and ψ “ 0. So this is a linear system and the coefficient matrix A :“
paq P R1ˆ1 is clearly diagonalizable, making the equation hyperbolic. The advection
equation is usually combined with an initial condition of the form

upx, 0q “ u0pxq (2.22)

where x ÞÑ u0pxq is a given function.
The advection equation models the flow of a substance (e. g. a chemical) that is

being carried along in the movement of a fluid (e. g. water in a tube). In this sense,
u should be thought of as the density of the substance. In practical applications,
advection famously shows up in the advection-diffusion equation. Studying just the
advection term on its own has some value here to better understand the behavior of
the entire advection-diffusion system.

We can use the method of characteristics from the previous subsection to construct
a solution to the initial value problem (2.21), (2.22) for the linear advection equation.
Since f 1pqq “ a, we have t˚ “ 0 and so T ˚ “ 8. Therefore a solution of the initial value
problem for the linear advection equation exists for all time and can be constructed
with the method of characteristics, cf. 2.2.1. Its solution is given as

upx, tq “ u0px
˚
q,

12

where x˚ is the solution of

x “ x˚
` ta

`

u0px
˚
q
˘

“ x˚
` ta.

So the solution of the initial value problem is

upx, tq “ u0px ´ atq.

This means the initial condition propagates to the right with constant speed a. Keeping
in mind the physical model, this solution should not come as a surprise.

2.3.2 Burgers’ Equation

As the name already suggests, the advection equation is linear. The simplest nonlinear
conservation law is the (inviscid) Burgers equation

ut ` uux “ 0 (2.23)

where, once again, px, tq ÞÑ upx, tq is the unknown function. In terms of the conserva-
tion law framework we have q :“ u, fpqq :“ 1

2
q2 and ψ “ 0 because (2.3.2) is equivalent

to
ut ` p1

2
u2qx “ 0

by the chain rule. This also shows that we are dealing with a quasilinear system with
matrix Apqq “ pqq P R1ˆ1. This, too, is always diagonalizable, making the equation
hyperbolic. Burgers’ equation is also typically combined with an initial condition of
the form (2.22).

While Burgers’ equation does have some practical applications in the field of traffic
flow, for example, it is mostly studied because of its theoretical properties. It is

Figure 2.1: Solution of Burgers’ equation with Gaussian-shaped initial
data. After some time the wave tips over itself and the true solution be-
comes multi-valued.

the simplest differential equation in which continuous initial conditions can become
discontinuous as time passes.

Like before we can use the method of characteristics on the initial value problem
for Burgers’ equation. Let u0 : R Ñ R be the initial condition. We have f 1pqq “ q, so

t˚ “ min
xPR

d

dx
u0pxq.

If u0 is monotonically increasing, then we get T ˚ “ 8 and the solution of the initial
value problem of Burgers’ equation is implicitly defined by

upx, tq “ u0px˚
q, x˚ “ x ´ tu0px˚

q.

13

If u0 is not monotonically increasing, a continuously differentiable solution of the initial
value problem only exists up to the time T ˚ ă 8. Up to this time the solution is
implicitly given like before. This is all we can say at the moment about the solution of
the problem because we need to know the function u0 explicitly to solve the equations
above.

2.3.3 The Shallow-Water Equations

A popular nonlinear system of conservation laws are the two-dimensional shallow-water
equations

ht ` phuqx ` phvqy “ 0,

phuqt ` phu2 ` 1
2
gh2qx ` phuvqy “ ´ghbx,

phvqt ` phuvqx ` phv2 ` 1
2
gh2qy “ ´ghby.

They describe the motion of certain types of waves. Here px, y, tq ÞÑ hpx, y, tq is the
height of a wave, px, y, tq ÞÑ upx, y, tq and px, y, tq ÞÑ vpx, y, tq the velocities of the
wave in the x and y direction respectively. The function px, yq ÞÑ bpx, yq models the
ground underneath the water. Also g :“ 9.81 is the gravitational constant. Figure 2.2
shows a visual representation of these functions in a setting reminiscent of an ocean.
For numerical tests, it is common to drop the y direction and instead view the one-

z

x

y
hpx, y, tq

bpx, yq

ηpx, y, tq

ηs

Figure 2.2: Geometry of the shallow-water model for tsunamis.

dimensional shallow-water system

ht ` phuqx “ 0, (2.24)

phuqt ` phu2 ` 1
2
gh2qx “ ´ghbx. (2.25)

Here the unknown functions are px, tq ÞÑ hpx, tq, px, tq ÞÑ upx, tq, while x ÞÑ bpxq is
given. The first equation (2.24) models conservation of mass while the second one
(2.25) describes conservation of momentum.

Both versions can be put into conservation law form. We will illustrate this for the
one-dimensional system. To this end, define the vector q :“ pq1, q2qT :“ ph, huqT for
the conserved variables and

fpqq :“

ˆ

q2
q22{q1 ` 1

2
gq21

˙

“

ˆ

hu
hu2 ` 1

2
gh2

˙

, ψpq, xq :“

ˆ

0
´gq1bx

˙

“

ˆ

0
´ghbx

˙

14

for the flux and the source term. The Jacobian matrix is given by

f 1
pqq “

ˆ

0 1
´pq2{q1q2 ` gq1 2q2{q1

˙

“

ˆ

0 1
´u2 ` gh 2u

˙

.

Simple linear algebra shows that its eigenvalues are

λ1 “ u ´
a

gh and λ2 “ u `
a

gh

with corresponding eigenvectors

r1 “

ˆ

1
u ´

?
gh

˙

and r2 “

ˆ

1
u `

?
gh

˙

.

For physically-relevant depths h ě 0 the eigenvalues remain real-valued and as long
as h ą 0 they are actually distinct. In particular, this shows that the shallow-water
equations are hyperbolic. Initial conditions need to be provided for both hpx, 0q :“
h0pxq and upx, 0q :“ u0pxq (or possibly phuqpx, 0q :“ phuq0pxq, if one is working with
the conservation form). As stated before, we only consider the case with vanishing
source term in this report. Physically speaking, this means that the function b is
constant, i. e., the bottom of the ocean over which the wave passes is assumed to be
flat.

To derive the shallow-water system one starts by considering a more general set of
differential equations (the Navier-Stokes equations). Then one assumes that the ver-
tical length scale of the wave (i. e. the unit of h) is much smaller than the horizontal
length scale(s) — this gives rise to the “shallow” part in the name of the equations.
Because of this assumption, it is possible to get rid of the contribution in the z direc-
tion. Hence, the shallow-water model is much easier to solve numerically. It seem to
strike a good balance between being sufficiently easy to solve to guarantee fast com-
putation and between being sufficiently complex to model the real world accurately
enough.

The shallow-water equations are frequently used in real-world applications. They
are, for example, the standard model for the type of wave that gets generated by an
undersea earthquake: tsunamis. Another popular application is the flow that results
when the wall of a large dam collapses. It is worth noting that other (incompressible)
fluids like gasses can also be modeled by the shallow-water system. The equations’
name is somewhat misleading in this sense.

3 Numerical Tests

In this section we want to test physics-informed neural networks (PINNs) to predict
solutions of initial value problems for one-dimensional systems of hyperbolic conser-
vation laws. Let Ω be an open subset of Rm, m P N and f : Ω Ñ Rm a sufficiently
smooth function. Recall the initial value problem (IVP) was defined as follows: We
want to find a function q : R ˆ r0,8r Ñ Ω that satisfies

qt ` fpqqx “ 0,

15

for all x P R, t ą 0 and
qpx, 0q “ q0pxq

for all x P R, where q0 : R Ñ R is some given function. We will compare the
approximate solutions to the analytical solutions of the IVP, given they are available.
When this is not possible, we require a different way to obtain the “true” solution to
compare with. The classical numerical methods for solving IVPs for conservation laws
are the finite-difference and the finite-volume method, see [11]. We do not have the
time to elaborate on the inner workings of the methods that were used here. Details
can be found in the code and the references. The reader may take these algorithms
as more or less a black box with which we are able to produce sufficiently accurate
approximations to the exact solution.

As one can see above, the IVP is defined over the whole space x P R ˆ r0,8r . To
solve the problem numerically we need to restrict the IVP to some finite space-time
domain rxmin, xmaxsˆr0, T s where xmin, xmax P R and T ą 0, i. e., we need to introduce
boundary conditions. Numerically, the problem that we want to solve is then defined
as follows: We want to find a function q : rxmin, xmaxs ˆ r0, T s Ñ Ω that satisfies

qt ` fpqqx “ 0, (3.1)

for all x P sxmin, xmaxr , t P s0, T r and

qpx, 0q “ q0pxq

for all x P rxmin, xmaxs, where q0 : rxmin, xmaxs Ñ R is some given function. Also

qpxmin, tq “ qlptq, qpxmax, tq “ qrptq

for t P r0, T s for some given functions qr, ql : r0, T s Ñ R. Physics-informed neural
networks are similar to standard neural networks with the key difference that we
include a term which accounts for the conservation law into the loss function to ensure
that the neural network satisfies this term. In our case the loss function consists of
three parts: the conservation law LCL, the initial data LID and the boundary data
LBD. Let NCL, NID, NBD P N, then we have

LCL “
1

NCL

NCL
ÿ

i“1

||utpxi, tiq ` fpupxi, tiqqx||
2,

where u is the current prediction of the PINN and tpxi, tiq | i “ 1, . . . , NCLu are some
given points, called the collocation points. Also we have

LID “
1

NID

NID
ÿ

i“1

||upxi, 0q ´ q0pxiq||
2

and

LBD “
1

2NBD

NBD
ÿ

i“1

||upxmin, tiq ´ qlptiq||
2

` ||upxmax, tiq ´ qrptiq||
2,

16

where tpxi, 0q | i “ 1, . . . , NIDu, tupxmin, tiq | i “ 1, . . . , NBDu and tupxmax, tiq | i “

1, . . . , NBDu are given points at the boundary of rxmin, xmaxs ˆ r0, T s. For simplicity,
we will call these points the data points. Then the loss function L is given by

L “ λ1LCL ` λ2pLID ` LBDq,

where λ1, λ2 ą 0 are parameters that are set before the training. More details can be
found in [14] and [5].

In the next subsection we want to predict the solutions of initial value problems
for the conservation laws that were introduced in the section before, namely the linear
advection equation, Burgers’ equation and the shallow-water equations, by training
PINNs. We will use the Adam optimizer. Also we set λ1 “ λ2 “ 1. For simplicity
we only use this setup for our tests in the next subsections, but we note that different
setups could yield better results. We will usually choose the collocation points and the
data points randomly in each training iteration. It is important to note, as we will see
later, that the way we choose these points can have an impact on the accuracy of the
predicted solutions. The code we use for the PINNs relies on PyTorch and is based
on [5]. We will train the PINNs on a NVIDIA T4 GPU and we compute the solutions
of the finite-volume and finite-difference methods on an INTEL XENON CPU. The
focus of this text is mostly to test the accuracy of the predicted solutions since it only
makes sense to look at the computing time if the predictions are accurate. However,
we will still state the times needed to train the networks.

3.1 Linear Advection Equation

We start by testing PINNs to solve two initial value problems for the linear advection
equation

utpx, tq ` 0.5uxpx, tq “ 0.

For both IVPs we choose xmin “ ´2, xmax “ 2, T “ 1 and the following boundary
conditions

up´2, tq “ up2, tq “ 0.

For the first IVP we use the initial condition

upx, 0q “ expp´2x2q

and for the second

upx, 0q “ exp
`

´ 200px ` 0.5q
2
˘

` exp
`

´ 2000px ´ 0.3q
2
˘

.

3.1.1 First Initial Value Problem

We start with the first IVP. Using the method of characteristics we get that the
analytical solution of the problem is given by

upx, tq “ exp
`

´ 2px ´ 0, 5tq2
˘

.

We predict the solution of the first IVP by training a PINN with 3 hidden layers.
Each of the three hidden layers contains 20 nodes and a hyperbolic tangent activation

17

function. We train the network 100 times at 650 points which are randomly chosen in
each training iteration. These consists of 500 points in rxmin, xmaxs ˆ r0, T s, 50 points
on the line t “ 0 and 50 points each on the left and right boundary, i. e. x “ xmin and
x “ xmax. In figure 3.1 one can see the prediction of the neural network (blue graph)
in comparison with the analytical solution (orange dotted graph). We can see that
the solution is already approximated fairly well. We can increase the accuracy if we
train the network more often or use more data and collocation points. In figure 3.2
one can see the prediction after training the PINN 100 times at 2600 points, i. e. 2000
collocation points and 200 points on the line t “ 0 and 200 points each on the left and
right boundary. The prediction after training the neural network 1000 times at 2600
points can be seen in figure 3.3. We can see that there is no real difference by using 650
or 2600 points and training the network 100 times, but the prediction after training
the network 1000 times is very accurate. Training the network 100 times takes in our
tests approximately 1 second. Training the network 1000 times takes circa 7 seconds.
We need to note these are only approximations since the training and computing time
can vary and depends on the device on which one computes the solutions.

Now we want to predict the solution by training a PINN with 5 hidden layers which
contains 50 nodes and a hyperbolic tangent activation function each. The prediction
after training the neural network 1000 times at 2600 points can be seen in figure 3.4
and the prediction after training the neural network 3000 times at 11 500, i. e. 10000
collocation points and 500 points on the line t “ 0 and 500 points each on the left and
right boundary can be seen in figure 3.5. Training the network 3000 times takes in our
test approximately 34 seconds.

In figure 3.6 one can see the solution computed by the finite-volume method (blue
graph) at the given times and at 200 spatial mesh points in comparison with the
analytical solution (orange dotted graph). In our test it takes approximately 0.2
seconds to compute the solution with the finite-volume method. Only the prediction
after training the PINN with 5 hidden layers 3000 times at 11500 points is as accurate
as the solution computed by the finite-volume method.

3.1.2 Second Initial Value Problem

We will now test and compare PINNs and the finite-volume method by solving the
second IVP for the linear advection equation stated before. This is more interesting,
since here we have a very narrow spike and classical numerical methods sometimes
develop problems approximating it. The analytical solution computed with the method
of characteristics is

upx, tq “ exp
`

´ 200px ` 0.5 ´ 0.5tq2
˘

` exp
`

´ 2000px ´ 0.3 ´ 0.5tq2
˘

.

We begin by predicting the solution of this IVP by training a PINN with 3 hidden
layers with 20 nodes and a hyperbolic tangent activation function each 1000 times
at 2600 points like before. The results at different times can be seen in figure 3.7,
where again the blue graph represents the solution predicted by the neural network
and the orange dotted graph the analytical solution. We can see that the prediction
is not very accurate, the second narrow spike is not even predicted at all. Reasons
for that can be using too few points at which we train the network and training the
network too few times. Therefore we will now train the network 2000 times at 11500

18

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.1: The prediction of the PINN after 100 training at 650 points.

0.0
0.2
0.4
0.6
0.8
1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.2: The prediction of the PINN after 100 training at 2600 points.

19

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.3: The prediction of the PINN after 1000 training at 2600 points.

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.4: The prediction of a PINN with 5 hidden layers after 1000
training at 2600 points.

20

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.5: The prediction of a PINN with 5 hidden layers after 3000
training at 11500 points.

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.6: The solution computed by the finite-volume method.

21

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.7: The solution predicted after training a PINN 1000 times at
2600 points.

points. The prediction can be seen in figure 3.8. We want to note that the predicted
solution can sometimes be better or worse than the prediction shown here. This is a
result of the nature of the neural networks. In figure 3.9 one can see the loss of the
PINN at the different training times. One can observe that the loss oscillates quite
strongly. Therefore we want to present a way to get rid of the oscillations. Instead of
randomly chosen points at the boundary we now choose fixed and equidistant points.
The prediction of the neural network after 2000 training iterations can be seen in
figure 3.10. This prediction has similar accuracy as the prediction before, but the loss
does not oscillates as much as before, as seen in figure 3.11. The training time in both
cases was approximately 14.5 seconds.

Now we predict the solution by training a PINN with 5 hidden layers. Each of
the hidden layers contain 50 nodes and a hyperbolic tangent activation function. The
prediction after training the network 5000 times at 29000 points, i. e. 20000 collocation
points, 5000 points at the line t “ 0 and 2000 points each at the boundary, with fixed
data points can be seen in figure 3.12. The training of the network takes approximately
60 seconds.

At this point we want to test how the finite-volume method deals with this kind
of problem. We approximate the solution at 200 spatial mesh points. The results can
be seen in figure 3.13. As we can see the narrow spike is not approximated very well.
This effect is called dispersion and it can be fixed by increasing the number of mesh
points. In figure figure 3.14 one can see the approximations at 1500 mesh points. At
this number of points the dispersion effect is barely noticeable. Around the time t “ 1
there is still a little bit of dispersion visible. The finite-volume method takes over 15
seconds to approximate the solution in figure 3.14.

22

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.8: The solution predicted after training a PINN 2000 times at
11500 points.

0 250 500 750 1000 1250 1500 1750 2000
Training Iterations

0.00000

0.00005

0.00010

0.00015

0.00020

Lo
ss

Training Loss

Figure 3.9: The loss at different training iterations.

23

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.10: The solution predicted by the PINN after training 2000
times at fixed data points.

0 250 500 750 1000 1250 1500 1750 2000
Training Iterations

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Lo
ss

Training Loss

Figure 3.11: The loss at different training iterations.

24

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.12: The solution predicted by a PINN with 5 hidden layers after
training 5000 times at fixed data points.

0.00

0.25

0.50

0.75

1.00

u(
x,

t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.00

0.25

0.50

0.75

1.00

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.13: The solution computed by the finite-volume method with
200 spatial mesh points.

25

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.33

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.66

2 1 0 1 2
x

Solution at t = 1

Figure 3.14: The solution computed by the finite-volume method with
1500 spatial mesh points.

26

3.2 Burgers’ Equation

Now we want to take it a step further and test PINNs for Burgers’ equation

utpx, tq ` uxpx, tqupx, tq “ 0.

Here we also want to consider two different IVPs. We start with smooth initial data
and after that we consider a Riemann problem, i. e. discontinuous initial data. Since
there are no easily computable analytical solutions for the IVPs that we are about to
study, the finite-volume method will be used to produce approximations. From the
discussion above it is clear that we must choose a sufficiently high number of grid
points for the approximations to be accurate enough. In this case 200 mesh points
were used.

3.2.1 First Initial Value Problem

For the first IVP we choose xmin “ ´2, xmax “ 2,T “ 0.5 and the following boundary
conditions

up´2, tq “ up2, tq “ 0.

Also we choose the initial condition

upx, 0q “ expp´2x2q.

By choosing T “ 0.5 we ensure that a continuously differentiable solution exists. We
start by training a PINN with 3 hidden layers which contain 20 nodes and a hyperbolic
tangent activation function. The results after training the PINN 1000 times at 2600
randomly chosen points can be seen in figure 3.15 where the orange dotted graph
is the approximate solution given by the finite-volume method. The training of the
PINN takes up to 7 seconds in our tests and the finite-volume method needs just
approximately 0.2 seconds to compute the solutions at the given times. As we can
see, the predictions by the neural network are quite accurate. With more training
at more points or more layers and nodes, the accuracy could be increased further.
But we now want to take a look at a more interesting aspect. We want to test how
the predictions behave if the solution of the IVP becomes discontinuous. For that we
choose T “ 2. With the method of characteristics one can compute that at this time no
continuously differentiable solution of the IVP exists. We train the network again 1000
times at 2600 points. The results can be seen in figure 3.16. The prediction is not very
accurate. To improve the accuracy we will train a PINN with 5 hidden layers. Each of
the five hidden layers contains 50 nodes and a hyperbolic tangent activation function.
We train the network 2000 times at 11500 points. The predictions can be seen in
figure 3.17. The prediction is now more accurate but there is still a notable difference
between the prediction and the solution computed by the finite-volume method. Now
we will train a PINN with 7 hidden layers which contain 100 nodes and a hyperbolic
tangent activation function. The predictions after training the network 5000 times at
21500 points, i. e. 20000 collocation points, can be seen in figure 3.18. The predictions
of the network are still not very accurate. Training the network 5000 times takes
approximately 118 seconds. The finite-volume method only needs under 0.5 second to
compute the solution at the spatial mesh points at the given times.

27

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.16

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0.33

2 1 0 1 2
x

Solution at t = 0.5

Figure 3.15: The prediction of the PINN after 1000 training.

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.66

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 1.33

2 1 0 1 2
x

Solution at t = 2

Figure 3.16: The prediction after training the PINN 1000 times.

28

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 0.66

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 1.33

2 1 0 1 2
x

Solution at t = 2

Figure 3.17: The prediction after training the network 2000 times at
11500 points.

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.66

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 1.33

2 1 0 1 2
x

Solution at t = 2

Figure 3.18: The prediction after training the network 5000 times at
21500 points.

29

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.66

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 1.33

2 1 0 1 2
x

Solution at t = 2

Figure 3.19: The prediction after training a PINN 2000 times at 11500
points.

3.2.2 Second Initial Value Problem

We will now take a look at a Riemann problem for Burgers’ equation. Here we have
not only a discontinuous solution but this time also discontinuous initial data:

upx, 0q “

#

1 if x ă 0

0 if x ą 0.

For this IVP we set xmin “ ´2, xmax “ 2, T “ 2 and the boundary conditions

upxmin, tq “ 1, upxmax, tq “ 0

The predictions after training a PINN with 5 hidden layers, like before, 2000 times at
11500 points, can be seen in figure figure 3.19. In figure 3.20 one can see the predicted
solution after training a PINN with 7 hidden layers which contains 100 nodes each
and a hyperbolic tangent activation function, 5000 times at 21500 points. Training
the PINN 5000 at 21500 times takes in our test circa 120 seconds. The finite-volume
method needs roughly 1.5 seconds to compute the solution at the given times. As seen
before, the prediction is not very accurate.

30

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 0 Solution at t = 0.66

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 1.33

2 1 0 1 2
x

Solution at t = 2

Figure 3.20: The prediction after training a PINN 5000 times at 21500
points.

31

3.3 Shallow Water Equations

At last we want to compare PINN and the finite-volume method by solving an IVP
for a system of two conservation laws, the one-dimensional shallow water equations

ht ` phuqx “ 0, (3.2)

phuqt ` phu2 ` 1
2
gh2qx “ ´ghbx. (3.3)

We set xmin “ 0, xmax “ 2 and T “ 0.2. As initial data for h we will use

h0pxq “

#

2 ´ bpxq if x ă 0

1 ´ bpxq if x ą 0

for all x P r0, 2s and for u
u0pxq “ 0

for all x P r0, 2s. For simplicity we set bpxq “ 0.5. This IVP is called the dam break
problem. Furthermore we set

hpxmin, tq “ 1.5, hpxmax, tq “ 0.5

and
upxmax, tq “ upxmin, tq “ 0

for all t P s0, 0.2r. Details on a finite-volume implementation for the shallow-water
equations can be found in [17].

We start by training a PINN with five hidden layers. Each of the hidden layers
contain 50 nodes and a hyperbolic tangent activation function. The predicted solutions
for h and u (blue graphs) after training the network 2000 times at 11500 points can be
seen in figure 3.21 (prediction for h) and figure 3.22 (prediction for u). The predicted
solution after training 2000 times at 11500 points with fixed equidistant data points
are depicted in figure 3.23 (prediction for h) and figure 3.24 (prediction for u).
As before the orange dotted graph is the solution computed with the finite-volume
method at the given times at 200 spatial mesh points. In our test the computation
took circa 5 second. Training the PINN took in our test 30 seconds. At last, we
want to train a PINN with 7 hidden layers. Each of the hidden layers contains 100
nodes and the same activation function as before. The predictions after training the
network 5000 times at 21500 points with fixed data points can be seen in figure 3.25
and figure 3.26. The training took approximately 200 seconds.

Two main aspects we partly already encountered in the sections before are visible
here. First of all the discontinuities which occur in the solutions are not predicted very
accurately. Secondly, we can observe that it can make quite a difference if the points
at t “ 0 and at the boundary are randomly chosen or fixed and distributed equally.
As we can see in the figure the difference between the two cases is quite large.

32

0.6

0.8

1.0

1.2

1.4
h(

x,
t)

Solution at t = 0 Solution at t = 0.06

0.0 0.5 1.0 1.5 2.0
x

0.6

0.8

1.0

1.2

1.4

h(
x,

t)

Solution at t = 0.13

0.0 0.5 1.0 1.5 2.0
x

Solution at t = 0.2

Figure 3.21: The prediction of h after 2000 training iterations with ran-
dom data points.

0.0

0.5

1.0

1.5

u(
x,

t)

Solution at t = 0 Solution at t = 0.06

0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

u(
x,

t)

Solution at t = 0.13

0.0 0.5 1.0 1.5 2.0
x

Solution at t = 0.2

Figure 3.22: The prediction of u after 2000 training iterations with ran-
dom data points.

33

0.6

0.8

1.0

1.2

1.4
h(

x,
t)

Solution at t = 0 Solution at t = 0.06

0.0 0.5 1.0 1.5 2.0
x

0.6

0.8

1.0

1.2

1.4

h(
x,

t)

Solution at t = 0.13

0.0 0.5 1.0 1.5 2.0
x

Solution at t = 0.2

Figure 3.23: The prediction of h after 2000 training iterations with fixed
data points.

0.0

0.5

1.0

1.5

u(
x,

t)

Solution at t = 0 Solution at t = 0.06

0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

u(
x,

t)

Solution at t = 0.13

0.0 0.5 1.0 1.5 2.0
x

Solution at t = 0.2

Figure 3.24: The prediction of u after 2000 training iterations with data
fixed points.

34

0.6

0.8

1.0

1.2

1.4
h(

x,
t)

Solution at t = 0 Solution at t = 0.06

0.0 0.5 1.0 1.5 2.0
x

0.6

0.8

1.0

1.2

1.4

h(
x,

t)

Solution at t = 0.13

0.0 0.5 1.0 1.5 2.0
x

Solution at t = 0.2

Figure 3.25: The prediction of h after training a PINN 5000 times at
21500 points with data fixed points.

0.0

0.5

1.0

1.5

u(
x,

t)

Solution at t = 0 Solution at t = 0.06

0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

u(
x,

t)

Solution at t = 0.13

0.0 0.5 1.0 1.5 2.0
x

Solution at t = 0.2

Figure 3.26: The prediction of u after after training a PINN 5000 times
at 21500 points with data fixed points.

35

3.4 Conclusion

At this point we want to draw some conclusions. Recall if we trained the PINNs to
predicts continuously differentiable solutions of initial value problems for conservation
laws the predicted solutions were quite accurate, as seen by predicting the solutions
of the first IVP for the linear advection equation and the first IVP with T “ 0.5 for
Burgers’ equation. One could increase the accuracy of the predictions by training them
more times at more points or one could choose more layers and nodes and different
activation functions to increase the accuracy even more. However we saw that for these
two initial value problems the finite-volume method computed a perfectly accurate
solution in very little time. So it is questionable if it is useful to predict the solutions
by training PINNs instead of using the finite-volume method.

By predicting the solution of the second IVP for the linear advection equation
we found that even after training a PINN with five hidden layers, the second spike
was not perfectly predicted. The accuracy could possibly be increased even more by
training more times and/or using different amounts of layers and nodes and different
activation functions and optimizers. We also saw that the finite-volume method took
quite long to compute a suitable solution. Maybe in these special cases, in which
the commonly used numerical methods have problems, the predictions of solutions by
training PINNs could deliver some promising results in less time. However in our tests
the finite-volume method computed a more accurate solution faster than the neural
network.

By training PINNs to predict discontinuous solutions of IVPs for conservation laws,
i. e. the initial value problems for Burgers’ equation, we saw that the predictions were
not very accurate. We now want to try to explain the problem of PINNs with discon-
tinuous solutions. There are two aspects. Firstly we used the hyperbolic tangent as our
activation function for the neural network. Hence our network is a smooth function
and therefore it is quite complicated for the network to approximate discontinuous
functions properly. Secondly by including the conservation law in differential form
into the loss, we assumed that the network is continuously differentiable. If the net-
work would predict a discontinuous solution perfectly, we get a contradiction, because
that would mean that the loss is zero and the network satisfies the conservation law.
This would require the network to be continuously differentiable. It is not impossible
that PINNs can approximate discontinuous solutions quite well, but it may take a
huge amount of layers and nodes or different activation functions and optimizers and
probably much more training, which may result in high training time and even high
memory usage. As we saw in our test even after training a PINN with seven hidden
layers many times at many points, the predicted solutions were still quite inaccurate.
In comparison the finite volume method computed very accurate solutions in little
time.

At last we tried predicting the solution of an IVP for the shallow-water equations by
training PINNs. Here we encountered the same problems with discontinuous solutions
like before, since even after training many times, the predictions were still not very
accurate. Also we found out that the way we choose the points at which the network
is trained can have an impact on the accuracy. The reason for the different accuracy
after training at fixed and randomly chosen points could be a result of the initial data.
Since it is constant left and right of a discontinuity we do not always have the same

36

amount of points on the left or right side of the discontinuity and so the value of the
loss LID can vary quite strongly with each iterations.

At this point we need to note, there is very much room for optimizing the pre-
dictions of the neural networks. And by finding the right parameters and values one
might be able to get accurate predictions quicker, but it would require immense test-
ing to get the optimal values and parameters for which the PINN gives a suitable
approximation after training acceptable times. One advantage of predicting solutions
with PINNs is that we get predictions for all points in the domain. The finite-volume
or finite-difference method only computes the solution at certain mesh points.

To conclude if the IVP has a continuously differentiable solution, the PINN gives
a quite accurate prediction of the solution, sometimes even after very few training
iterations. But the predictions of discontinuous solutions are not very accurate. This is
a crucial issue, since discontinuities occur often in the solutions of IVPs for conservation
laws. The finite-volume method has no problems with discontinuous solutions and
generally computes very accurate solutions in little time. So to sum up until the
problem with discontinuous solution is not solved, the finite-volume method is at the
moment still the better choice for solving initial value problems for conservation laws,
since it is generally quite fast and more importantly computed more accurately.

3.5 Outlook

In this subsection we want to present some aspects and ideas, which were not covered
in the text so far or which might be interesting to investigate in the future. We want
to show that with PINNs we can predict the solution of IVPs outside of the domain in
which we trained the network. Also in this text we only considered one-dimensional
conservation laws, so we want to present the predictions of the initial value problem
for the two-dimensional advection equation by training a PINN. We want to show that
with PINNs we can predict the solution of IVPs, which are defined for all points in
x P R ˆ r0,8r. At last we want to reference some improvements one cloud make to
increase the accuracy of the predictions for discontinuous solutions.

3.5.1 Predictions Outside of the Training domain

In this text we only considered initial value problems that are defined over some
bounded domain. The reason for that was that the numerical method needs such a
bounded domain. However, we can train a neural network on some bounded domain
and it will give predictions of the solution for all points in x P Rˆr0,8r. Here we want
to train a PINN with 5 hidden layers to solve the first IVP for the linear advection
equation, from the section before. Each of the five hidden layers contain 50 nodes and
a hyperbolic tangent activation function. We will train the network 5000 times with
no boundary conditions at 10500 points in the domain r´2, 2s ˆ r0, 1s. From the 10500
points are 10000 collocation points and 500 are at the line t “ 0. The prediction of the
network at t “ 0, t “ 1, t “ 5 and t “ 10 in comparison with the analytical solution
can be seen in figure 3.27. We can see the predictions are quite accurate and even at
t “ 5 and t “ 10. This could be an important advantage of PINNs in comparison
to the finite-volume method, since even if we only have data in some small domain
available it allows us to get predictions quite accurate outside of that domain.

37

0.0

0.2

0.4

0.6

0.8

1.0
u(

x,
t)

Solution at t = 0 Solution at t = 1

10 5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

Solution at t = 5

10 5 0 5 10
x

Solution at t = 10

Figure 3.27: The prediction of the solution in comparison with the ana-
lytical solution.

3.5.2 Two-Dimensional Advection Equation

We want to predict the solutions of an initial value problem for the two-dimensional
linear advection equation

utpx, y, tq ` 0.5uxpx, y, tq ` 0.5uypx, y, tq “ 0. (3.4)

The IVP we want to solve is defined as the following: We want to find a function
u : r´2, 2s ˆ r´2, 2s ˆ r0, 1s Ñ Ω that satisfies (3.4) for all x P s´2, 2r , y P s´2, 2r and
t P s0, 1r and

upx, y, 0q “ expp´5px2 ` y2qq

for all x P s´2, 2r and y P s´2, 2r. Also u needs to satisfy

up´2,´2, tq “ up´2, 2, tq “ up2,´2, tq “ up2, 2, tq “ 0

for all t P r0, 1s. We want to predict the solution by training by training a PINN with
3 hidden layers. Each of the three hidden layers contains 20 nodes and a hyperbolic
tangent activation function. We will use the Adam optimizer. The loss functions for
the two-dimensional case are similar to the one-dimensional case, we just need to keep
in mind that we have four instead of two boundary conditions. The prediction after
training the PINN 400 times at 750 points, i. e. 500 collocation points, 50 points at
t “ 0 and 50 points each at the four boundaries, in comparison with the analytical
solution at different times can be seen in figure 3.28. We can see that the prediction
by the PINN is quite accurate. The reason for that is probably that the solution is
smooth.

38

Figure 3.28: The prediction of the solution in comparison with the ana-
lytical solution.

3.5.3 Improvements for Higher Accuracy

The main issue we encountered by using PINNs to predict the solution of IVPs for
hyperbolic one-dimensional systems of conservation laws is the fact that they struggle
with discontinuities. As said before, one could try different activation functions that
are not smooth to predict the discontinuities better. Another option is to modify the
loss function and not include the conservation law in the loss function. In [15] the
author presents a new approach to predict the entropy solution scalar conservation
laws, the so-called weak PINNs. Instead of minimizing the conservation laws the
weak PINNs minimize an optimization problem which is connected to some entropy
conditions. Another approach is the so-called deep finite-volume method, which is
presented in [4]. The author states it is designed according to the weak form of the
partial differential equation and so may achieve better accuracy than PINNs when the
solution is insufficiently smooth. Approximating the discontinuous solutions of IVPs
for systems of conservation laws is an interesting topic for future research.

4 A Theoretical Result: Smooth Approximation in

Sobolev Spaces

In this section we provide the details of an important theoretical result on Sobolev
spaces which the lecture could not cover. We say that a subset U of some (function)
space pV, || ¨ ||q is dense in said space, if any element in V can be approximated
arbitrarily well by elements from U . Formally, this means that for every v P V there
exists a sequence pukqkPN in U such that ||uk ´ v|| Ñ 0 as k Ñ 8. In our case, U will
correspond to functions in C8 or C8

c and V will be some type of Lp or Sobolev space

39

Hm with the corresponding norm.
The way in which approximation results tend to show up in in the context of

Sobolev spaces is roughly as follows: First, one proves a claim (e. g. an inequality)
for all “nice” functions which are dense in the space, then one establishes that all
operators that appear are continuous which, in turn, implies the same result for the
entire function space via density, upon passing to the limit.

This section is divided into three subsections. We begin in subsection 4.1 by
introducing the idea of the convolution of two functions. The result is a new function
which can be thought of as their average. By averaging arbitrary functions with special
types of smooth functions (so-called mollifiers) we can obtain smooth approximations
to the original functions. This will be explained in subsection 4.2. Finally, a similar
approach generalizes to weak derivatives and thus to Sobolev spaces. Subsection 4.3
derives the Meyers-Serrin theorem which is the most famous density result for Sobolev
spaces.

4.1 The Convolution

In this subsection we present the fundamental tool that is used to find smooth ap-
proximations to complicated functions. The idea is to average the initial function f
with a special kind of weight function w which is so smooth that it forces the weighted
average (later denoted w ˚f) to be smooth itself. By a clever choice of weights one can
then generate a sequence of smooth functions which converge to the original function.
For example, in applications f might be a distorted signal and the averaging procedure
that we are about to describe would then remove some of the noise.

Let us begin by finding an appropriate notion of averaging two functions together.
Say we are given some (e. g. continuous) map f : R Ñ R. Let us pick a concrete
value x P R at which we want to average f . Doing so for all x later on will yield
a new function which can be seen as an averaged version of f . A standard result of
real analysis is that 1

b´a

şb

a
fpyq dy measures the average value of f over the interval

ra, bs Ď R. Indeed, the fundamental theorem of calculus tells us that F 1pxq “ fpxq for
F pxq :“

şx

a
fpyq dy which implies that for sufficiently small h ą 0 we should have

fpxq “ F 1
pxq «

F px ` hq ´ F px ´ hq

2h
“

ż x`h

x´h

1

2h
fpyq dy,

employing a central difference approximation to the derivative. So a suitable average
could be found by picking a fixed h ą 0 which is (i) as small as needed to still be close
enough to the original function’s value and (ii) as large as needed to yield a proper
averaging. Let us assume for the sake of discussion that h :“ 1 is a suitable choice for
our function f . Then the averaged value of fpxq is given by a new function

faveragepxq :“

ż x`1

x´1

1

2
fpyq dy. (4.1)

We can rewrite faverage somewhat by introducing a weight

wuniformpzq :“

#

1
2
, for z P r´1, 1s

0, for z P Rzr´1, 1s.

40

With it (4.1) can be recast into an integral over the entire domain:

faveragepxq “

ż

R
wuniformpy ´ xqfpyq dy. (4.2)

Notice that the weight function wuniform is chosen such that all function values in an
interval of length 2 around the given point x are equally “important” to the averaging
process. This is comparable to the arithmetic mean. Just like the arithmetic mean
can be generalized to a weighted arithmetic mean, so, too, can the weight function
wuniform be generalized to some other kinds of weights w : R Ñ R. For example, the
weight

wquadraticpzq :“

#

3
4
p1 ´ z2q, for z P r´1, 1s

0, for z P Rzr´1, 1s

prioritizes values closer to x. Notice, however, that any true averaging function, of-
ten called a kernel function or filter function in applications, should always satisfy
ş

Rwpzq dz “ 1 and wpzq ě 0 for all z P R.
Obviously, (4.2) can also be worked out for every point and with much more general

functions. This leads (more or less) to the following definition.

Definition 4.1 (Convolution)
Given two functions f, g : Rd Ñ R. We define a new function f ˚ g : Rd Ñ R called
the convolution of f and g via

pf ˚ gqpxq :“

ż

Rd

fpx ´ yqgpyq dy, x P Rd.

Whenever f and g are such that the integral exists for almost all x P Rd, we say that
f and g are convolvable. If any of the functions is only defined on a subset Ω Ď Rd,
then we can extend it by zero outside Ω and still compute the integral above.

We follow the typical conventions here where the input of f is “the wrong way around”,
i. e., it uses x ´ y instead of y ´ x as in the derivation. The reader should not worry
about this too much. It is mostly just a convention.

We note several important results related to convolutions of Lp with L1 functions.
It is worth keeping in mind, however, that in our applications the L1 function will
actually be a C8

c function. We recall the notation A ` B :“ ta ` b | a P A, b P Bu

for two sets A and B. In addition, we will say that a subset Ω Ď Rd is a domain, if it
is open and connected. The connectedness assumption is usually not needed for the
results that follow. But domains are the typical setting that one needs for the study
of partial differential equations. The support of a continous function f : Ω Ñ R is
defined as supp f :“ tx P Ω | fpxq ‰ 0u where the closure is taken with respect to the
Euclidean norm | ¨ | in Rd. This means that supp f Ď Ω, but not supp f Ď Ω in general.
If f was an equivalence class of functions in the Lp sense, then a generalized version of
the support (the essential support) could be considered instead, cf. [12, Section 1.5].

Lemma 4.2 (Properties of the convolution)
Let Ω Ď Rd be a domain, f P LppΩq for some 1 ď p ă 8 and g P L1pΩq. Then the
following properties hold:

41

2 1 0 1 2
0.00

0.25

0.50

0.75

Kernel w

2 1 0 1 2
0.0

0.5

1.0
Function f

2 1 0 1 2
0.0

0.5

1.0
Convolution w f

40 20 0 20 40
0.00

0.01

0.02

400 200 0 200 400

2

0

2

400 200 0 200 400

2

0

2

2 0 2
0.00

0.25

0.50

0.75

2 0 2
0.0

0.5

1.0

2 0 2
0.0

0.2

0.4

Figure 4.1: Examples of convolutions w ˚ f (third column) of functions f
(second column) with kernels w (first column).

(a) f ˚ g P LppΩq with ||f ˚ g||LppΩq ď ||f ||LppΩq ||g||L1pΩq. In particular, f and g are
convolvable.

(b) f ˚ g “ g ˚ f .

(c) supp f ˚ g Ď supp f ` supp g.

(d) If ϕ P Cm
c pΩq, then ϕ ˚f P CmpΩq and for every multi-index α P Nd

0 with |α| ď m
we have

Dα
pϕ ˚ fq “ f ˚ Dαϕ.

Proof sketch: We only give a sketch of the proof and refer to section X.7 of the book
[2] by Amann and Escher for details. First, one must show that the convolution
integral is well-defined for Lp functions. This comes down to proving that the value of
the integral does not depend on the concrete representative of the equivalence class.

The proof of (a) is by Hölder’s inequality and Fubini’s theorem. It also relies on
the translational invariance of the Lebesgue measure.

The proof of (b) is due to the change of variables formula for integrals (German:
Transformationssatz).

The proof of (c) goes as follows. Choose concrete representatives f P LppΩq and
g P L1pΩq from the respective equivalence classes. We may assume f ˚ g ‰ 0 without
loss of generality. For any x P tx P Rd | pf ˚ gqpxq ‰ 0u there exists a y P Rd such that

42

fpx ´ yqgpyq ‰ 0. Hence y P supp g and x P y ` supp f , so x P supp f ` supp g. This
yields

tx P Rd
| pf ˚ gqpxq ‰ 0u Ď supp f ` supp g

and taking the closure over both sides gives the desired inclusion.
We will prove (d) only for the first partial derivative; the more general case then

follows by induction. Let e1, . . . , ed P Rd denote the standard unit vectors and fix
i P t1, . . . , du. Then we have

pϕ ˚ fqpx ` heiq ´ pϕ ˚ fqpxq

h
“

ż

Ω

ϕpx ` hei ´ yq ´ ϕpx ´ yq

h
fpyq dy

for all h ‰ 0 where |h| is sufficiently small such that the convolution is still defined
at x ` hei. So if the difference quotient converges uniformly to Bϕ

Bxi
px ´ yq, we could

exchange limits and integration to obtain the desired assertion. Let us see why this
is indeed the case. A straightforward argument can be used to show that Bϕ

Bxi
is even

uniformly continuous on Rd because of its compact support (continuous functions are
uniformly continuous on compact sets). Hence, for every ε ą 0 there exists a δ ą 0
such that

|x ´ y| ă δ ùñ

ˇ

ˇ

ˇ

ˇ

Bϕ

Bxi
pxq ´

Bϕ

Bxi
pyq

ˇ

ˇ

ˇ

ˇ

ă ε

for all x, y P Rd. So if we choose y :“ x ` thei with t P r0, 1s and |h| ă δ, then
|x ´ y| “ t|h| ă δ, so

ˇ

ˇ

ˇ

ˇ

Bϕ

Bxi
pxq ´

ϕpx ` heiq ´ ϕpxq

h

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bϕ

Bxi
pxq ´

ż 1

0

Bϕ

Bxi
px ` theiq dt

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0

ˇ

ˇ

ˇ

ˇ

Bϕ

Bxi
pxq ´

Bϕ

Bxi
px ` theiq

ˇ

ˇ

ˇ

ˇ

dt

ď ε

by the mean value theorem. This establishes the uniform convergence by taking the
supremum of this inequality over all x. ■

In the previous theorem it is essential that f and g are both defined on Ω and not
on a bigger set. For example, notice that (the restriction of) a function from Rd to R
could lie in LppΩq even if it does not vanish outside Ω. And, indeed, the theorem is
not true in this case, see [12, Theorem 2.16], because the “extension by zero outside
of Ω” argument no longer works.

4.2 Mollification

This subsection is dedicated to the approximation of “bad” functions with “good”
functions. More concretely, we wish to approximate arbitrary Lp functions with C8

c

functions. The approximation process will actually be constructive. Its basic idea is
to take a general function from Lp and to “average it” with a special kind of smooth
function from C8

c . The result is then C8 and can be used to approximate the initial
function. Averaging two functions will be done using the convolution as discussed in
the previous subsection.

43

We begin by introducing the functions which, upon being convolved with the orig-
inal function, will yield the smooth approximations. Such functions are called molli-
fiers (“to mollify” means “besänftigen” in German). Our discussion begins with the
so-called standard mollifier

Jpxq :“

#

Cd exp
´

1
|x|2´1

¯

, if |x| ă 1

0, if |x| ě 1

+

, x P Rd. (4.3)

Here the constant Cd ą 0 depends on the dimension of the space d and is choosen
such that

ş

Rd Jpxq dx “ 1. Notice that J defines a kernel function in the sense of the

1.0 0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

J(
x)

= 1
= 0.8
= 0.5

Figure 4.2: Some mollifiers (4.4) in R1.

previous subsection. For each ε ą 0 we also study the rescaled versions

Jεpxq :“
1

εd
J
´x

ε

¯

, x P Rd, (4.4)

see figure 4.2. These functions are our mollifiers. They have the following properties.

Lemma 4.3 (Properties of mollifiers)
For ε ą 0 the mollifier Jε : Rd Ñ R from (4.4) has the following properties:

(a) Jε P C8
c pRdq;

(b) supp Jε “ Bεp0q “
␣

x P Rd
ˇ

ˇ |x| ď ε
(

;

(c)
ş

Rd Jεpxq dx “ 1;

(d) Jεpxq ě 0 for all x P Rd.

The proof of everything except the fact that Jε P C8pRdq is essentially an immediate
consequence of the construction of Jε. The differentiability requires a somewhat in-
volved analysis argument that we do not want to give here. Essentially, one proceeds
by induction and shows that the derivative of the function t ÞÑ expp´1{tq at t “ 0
can be expressed as the product of two functions with certain properties. This can
then be used to prove the existence of the differential quotient by some standard limit
estimates.

We now describe how mollifiers are used to “smooth out” functions. To this end,
let Ω Ď Rd be a domain. We will write K ĂĂ Ω and say that K is compactly contained

44

in Ω when K is compact and still contained in Ω, i. e. K Ď Ω. With this notation, let
us define the sets

Lp
locpΩq :“

␣

u P Lp
pΩq

ˇ

ˇ u|K P Lp
pKq for any K ĂĂ Ω

(

, 1 ď p ă 8

to denote the so-called locally p-integrable functions. To calculate the values of the
restriction u|K , we can use the characteristic function of the set χK which outputs 1
when x P K and 0 else and write χKu. We note that Lp

locpΩq Ď L1
locpΩq by a well-known

result about Lp spaces (see [1, Theorem 2.14]) and hence LppΩq Ď Lp
locpΩq Ď L1

locpΩq.
For any function u P L1

locpΩq we define its mollification by

uε :“ Jε ˚ u. (4.5)

Notice that since u is defined on Ω and Jε has support in Bεp0q (by lemma 4.3 (b)),
this operator is well-defined at all points in the subset

Ωε :“ tx P Ω | distpx, BΩq ą εu. (4.6)

Indeed, we have

uεpxq “

ż

Bεpxq

Jεpx ´ yqfpyq dy “

ż

Bεp0q

Jεpzqfpx ´ zq dz.

Since the distance function x ÞÑ distpx, BΩq :“ inf
␣

|x ´ y|
ˇ

ˇ y P BΩ
(

is continuous

Bεpxq

x

Ωε

Ωε

Ω

Ωε

Figure 4.3: The set Ωε Ď Ω in which every point has distance of at least ε
to the boundary BΩ. The figure on the right shows that while Ωε is always
an open set, it may no longer be connected.

(clear?), the set Ωε is open (as the preimage of an open set); although it may no
longer be a domain, cf. figure 4.3.

Perhaps the effect of a mollification is best illustrated by an example.

Example 4.4 Let us view the Heaviside step function

upxq “

"

1, if x ą 0
0, if x ď 0

*

, x P R.

Its mollification is

uεpxq “ pJε ˚ uqpxq “

ż x

´ε

Jεpyq dy.

45

We see immediately that uεpxq “ 0 for x ď ´ε and uεpxq “ 1 for x ě ε. In r´ε, εs
the function must grow monotonously. The case ε :“ 1 can be seen in the first row of
figure 4.1. ■

The mollification of a function has many wonderful properties. The following result is
theorem A.16 in the book [3] by Bressan.

Theorem 4.5 (Properties of mollification)
Let Ω Ď Rd be a domain. Then the following hold:

(a) If u P L1
locpΩq, then for every ε ą 0 one has uε P C8pΩεq.

(b) If u P L1
locpΩq, then, as ε Ó 0, uεpxq Ñ upxq pointwise for almost all x P Ω.

(c) If u P CpΩq, then, as ε Ó 0, uε Ñ u uniformly on compact subsets of Ω (i. e.
||uε ´ u||CpKq Ñ 0 for all K ĂĂ Ω).

(d) If 1 ď p ă 8 and u P Lp
locpΩq, then, as ε Ó 0, uε Ñ u in Lp

locpΩq (i. e. ||uε ´

u||LppKq Ñ 0 for all K ĂĂ Ω).

Proof: (a) This is an immediate consequence of lemma 4.2 (d).

(b) We do not prove (b) because it will not play a role in the following discussion. We
refer the interested reader to Bressan’s book.

(c) Let u P CpΩq and pick sets K ĂĂ U ĂĂ Ω. The continuous function u is even
uniformly continuous on the compact set U by a well-known result from analysis. So
for every ε ą 0 there exists a δ ą 0 such that

|x ´ y| ď δ ùñ |upxq ´ upyq| ď ε

for x, y P U . Now make δ small enough such that the support of the mollification
uδ : Ωδ Ñ R lies inside of U , e. g. δ ă distpK, BUq. Then

|uδpxq ´ upxq| “

ˇ

ˇ

ˇ

ˇ

ż

Bδpxq

Jδpx ´ yq
`

upyq ´ upxq
˘

dy

ˇ

ˇ

ˇ

ˇ

ď ε

ż

Bδpxq

Jpx ´ yq dy ď ε

for all x P K by lemma 4.3 (c). Taking the supremum of this inequality over all x P K
proves the uniform convergence.

(d) Let u P Lp
locpΩq and pick K ĂĂ U ĂĂ Ω. Note that uε P LppKq by lemma 4.2 (a)

with
||uε||LppKq ď ||u||LppKq ||Jε||L1pKq.

Also, by lemma 4.3 (c), Jε is normalized, so ||Jε||L1pKq ď 1. Since K Ď U we have
||u||LppKq ď ||u||LppUq. All in all this yields the estimate

||uε||LppKq ď ||u||LppUq. (4.7)

46

Now fix a δ ą 0. Since continuous functions CpUq are dense in LppUq (cf. theorem
2.19 in [1]), we can find g P CpUq with ||u ´ g||LppUq ă δ. Then

||uε ´ u||LppKq ď ||uε ´ gε||LppKq ` ||gε ´ g||LppKq ` ||g ´ u||LppKq

(4.7)

ď ||u ´ g||LppUq ` ||gε ´ g||LppKq ` ||g ´ u||LppUq

ď δ ` ||gε ´ g||LppKq ` δ.

Since g is continuous gε Ñ g uniformly on the compact set K by (c). Hence,
lim supεÓ0 ||uε´u||LppKq ď 2δ and since δ ą 0 was arbitrary, this proves ||uε´u||LppKq Ñ

0 for ε Ó 0. ■

We can see from (a) that mollification has the desired smoothing property. The results
(b)–(d) give insight into the convergence of uε to u (in different norms). Indeed, as we
explain next, these findings are not that surprising.

Remark 4.6 (Distributions)
The intuition behind why uε should converge to u at least pointwise is actually related
to the motivation for the convolution from the previous subsection: We can think of
the mollification as an averaging with a smoothed out step function. As the size of
the step shrinks, the average becomes closer and closer to the actual function value.
At the same time the height of the step must grow larger and larger to keep the area
of the weight at unity. In the limit, then, we would expect a weight function like

δpxq :“

#

8, if x “ 0

0, if x ‰ 0.

This obviously isn’t really the case (since
ş

Rd δpx´ yqupyq dy “ 0q, but it is still a nice
visual to keep in mind. The “function” δ is called the δ distribution. It is the entry
point to the theory of distributions. We refer the interested reader to the book [2,
Section X.7] for an introductory overview. ■

On the basis of the results from theorem 4.5 we are able to prove the following density
theorem for Lp spaces.

Theorem 4.7 (C8
c is dense in Lp)

Let Ω Ď Rd be a domain. Then C8
c pΩq is dense in LppΩq for every 1 ď p ă 8, i. e.,

for every u P LppΩq there exists a sequence pukqkPN in C8
c pΩq such that

||uk ´ u||LppΩq Ñ 0 as k Ñ 8.

Proof: Given u P LppΩq and δ ą 0. A simple application of the dominated convergence
theorem yields a (possibly very large) compact set K Ď Ω such that

||u||LppΩzKq ď δ
2
.

Now if we choose ε ă distpK, BΩq, then the convolution vε :“ Jε˚puχKq is well-defined.
By theorem 4.5 (d) we can make ε small enough such that

||uχK ´ vε||LppRdq “ ||u ´ vε||LppKq ď δ
2
.

47

Therefore

||u ´ vε||LppΩq “ ||uχK ` uχΩzK ´ vε||LppΩq

ď ||uχK ´ vε||LppΩq ` ||uχΩzK ||LppΩq

“ ||uχK ´ vε||LppRdq ` ||u||LppΩzKq

ď δ.

Hence, setting uk :“ v1{k for k P N yields the desired approximating sequence. ■

We note that the previous result was used for a crucial theorem on Sobolev spaces
in the course (namely what is often called the fundamental lemma of the calculus of
variations in chapter II, section I) which was needed to establish the uniqueness of
the weak derivative.

We end our discussion on mollifiers with a remark.

Remark 4.8 (Friedrichs mollifiers)
At the beginning of this subsection we defined the standard mollifier (4.3). The re-
sulting family of mollifiers are sometimes called Friedrichs mollifiers. They are by far
the most popular family of mollifiers. However, in principle it is possible to start with
a different function J that has all the same properties as our standard mollifier. The
definition (4.4) still works and produces another family of mollifiers that also obey
lemma 4.3. For example, one could adapt the construction from example 4.4 to create
smoothed versions of step functions. It is worth pointing out that the the ideas from
remark 4.6 do not rely on the special shape of the mollifiers. Each of them converges
to the δ distribution pointwise. ■

4.3 The Meyers-Serrin Theorem

In this subsection we will prove the Sobolev space analog of the previous subsection’s
approximation theorem. It seems reasonable to hope that a similar mollifier ansatz
might work here, too, because Sobolev spaces are closely related to Lp spaces. And
this is indeed so. To this end, recall that any Sobolev function u P HmpΩq lies in
L2pΩq, so we can simply define uε as in (4.5) on Ωε as in (4.6).

We begin with the following approximation result which is akin to to theorem 4.5
(d). It shows that every Sobolev function can locally be approximated by a smooth
Sobolev function.

Lemma 4.9 (Mollification in Sobolev spaces) [1, Lemma 3.16]
Let Ω Ď Rd be a domain and U ĂĂ Ω a subdomain. Then for any m P N and
u P HmpΩq we have

uε :“ pJε ˚ uq P Hm
pUq X C8

pUq

for all sufficiently small ε ą 0 and, as ε Ó 0, uε Ñ u in HmpUq, i. e. ||uε´u||HmpUq Ñ 0.

Proof: Let α P Nd
0 be a multi-index with |α| ď m. We show that

Dαuε “ Jε ˚ pDαuq in U (4.8)

where ε ą 0 is chosen sufficiently small such that the convolution is well-defined, e. g.
ε ă distpU, BΩq. Hence, U Ď Ωε for such ε and uε P C8pUq follows immediately by

48

theorem 4.5 (a). Once (4.8) is established, we can use theorem 4.5 (d) to conclude that
||Dαuε ´ Dαu||L2pUq Ñ 0 as ε Ó 0 which, in turn, implies the desired approximation

||uε ´ u||
2
HmpUq “

ř

|α|ďm ||Dαuε ´ Dαu||2L2pUq
Ñ 0.

It also establishes that uε ´ u P HmpUq, so uε “ puε ´ uq ` u P HmpΩq, too. This is
all that was to prove.

So let us show (4.8). To work with the definition of the weak derivative, we require
a test function ϕ P C8

c pUq. One obtains
ż

U

uεpxqpDαϕqpxq dx

“

ż

U

pJε ˚ uqpxqpDαϕqpxq dx (by (4.5))

“

ż

U

„
ż

Rd

Jεpyqupx ´ yq dy

ȷ

pDαϕqpxq dx (by lemma 4.2 (b))

“

ż

Rd

ż

U

Jεpyqupx ´ yqpDαϕqpxq dxdy (by Fubini’s theorem)

“

ż

Rd

Jεpyq

„
ż

U

upx ´ yqpDαϕqpxq dx

ȷ

dy (by Fubini’s theorem)

“

ż

Rd

Jεpyq

„
ż

U

p´1q
α
pDαuqpx ´ yqϕpxq dx

ȷ

dy (by definition of
the weak derivative)

“ p´1q
α

ż

U

„
ż

Rd

JεpyqpDαuqpx ´ yqdy

ȷ

ϕpxq dx (by Fubini’s theorem)

“ p´1q
α

ż

U

pJε ˚ Dαuqpxqϕpxq dx. (by lemma 4.2 (b))

Since ϕ was arbitrary, this establishes (4.8) which ends the proof. ■

Proving the titular density result will require a product rule for weak derivatives. For
its formulation we remind the reader that two multi-indices α “ pα1, . . . , αdq, β “

pβ1, . . . , βdq P Nd
0 are compared with

α ď β : ðñ αi ď βi for all i “ 1, . . . , d.

We will also set α! :“ α1! ¨ . . . ¨αd! for a multi-index’ factorial. This allows us to define
a binomial coefficient for multi-indices via

ˆ

α
β

˙

:“

ˆ

α1

β1

˙

¨ . . . ¨

ˆ

αd

βd

˙

“
α1!

β1!pα1 ´ β1q!
¨ . . . ¨

αd!

βd!pαd ´ βdq!
“

α!

β!pα ´ βq!
.

With this notation, we can generalize a well-known result for regular derivatives.

Lemma 4.10 (Leibniz rule)
Let Ω Ď Rd be a domain, u P HmpΩq for some m P N and ψ P C8

c pΩq. Then
ψu P HmpΩq, too, and for a multi-index α P Nd

0 with |α| ď m we have

Dα
pψuq “

ÿ

βďα

ˆ

α
β

˙

DβψDα´βu.

49

Proof: The proof is by induction on |α|. Suppose first that |α| “ 1. Pick ϕ P C8
c pΩq.

Then ϕψ P C8
c pΩq, too. Hence,

ż

Ω

Bu

Bxi
ϕψ dx “ ´

ż

Ω

u
B

Bxi
pϕψq dx “ ´

ż

Ω

u

ˆ

Bϕ

Bxi
ψ ` ϕ

Bψ

Bxi

˙

dx.

for all i “ 1, . . . , d, using the definition of the weak derivative and the standard chain
rule for differentiable functions. This is equivalent to

´

ż

Ω

pψuq
Bϕ

Bxi
dx “

ż

Ω

ˆ

Bψ

Bxi
u ` ψ

Bu

Bxi

˙

ϕ dx for all i “ 1, . . . , d,

so we have deduced

B

Bxi
pψuq “

Bψ

Bxi
u ` ψ

Bu

Bxi
P L2

pΩq for all i “ 1, . . . , d

in the weak sense. This establishes the base case of the induction. For details on the
induction step, see the proof of theorem 1 in subsection 5.2.3 in [7]. ■

We can now give the desired approximation theorem for Sobolev spaces. It shows
that any Sobolev function can be approximated arbitrarily well by a smooth Sobolev
function. Particularly noteworthy about this result is that it does not require the
domain’s boundary to have any regularity.

Theorem 4.11 (Meyers-Serrin theorem) [1, Theorem 3.17]
Let Ω Ď Rd be a domain and m P N. Then C8pΩq XHmpΩq is dense in HmpΩq, i. e.,
for every u P HmpΩq there exists a sequence pukqkPN in C8pΩq X HmpΩq such that

||uk ´ u||HmpΩq Ñ 0 as k Ñ 8.

Proof: The sets

Ok :“
␣

x P Ω | distpx, BΩq ą 1
k
and |x| ă k

(

, k P N

are open as they are the intersection of two open sets, namely Ok “ Ω1{k X Bkp0q (cf.
(4.6)), and bounded, so Ok ĂĂ Ω for all k P N. Also, define O0 :“ ∅ and O´1 :“ ∅.
Then the layers (see figure 4.4)

Uk :“ Ok`1zOk´1, k P N0

are also open as the finite intersection of two open sets, namely Uk “ Ok`1XpRdzOk´1q.
The reason why we cannot work with Ok`1zOk directly is that the boundary BOk would
be missing.

Notice that the Ok form an open cover of Ω, i. e. Ω Ď
Ť8

k“´1Ok, because any point
in Ω is eventually (i. e. for sufficiently large k) contained in Ok. Hence, the Uk also
form an open cover of Ω, i. e. Ω Ď

Ť8

k“0 Uk. Now choose a corresponding partition of
unity pψkqkPN0 subordinate to the cover U0, U1, . . . (cf. chapter I, section I of the lecture
or theorem 3.15 in [1]). Recall that this means that ψ0, ψ1, . . . P C8

c pRdq with

(i) suppψk Ď Uk, k P N0;

50

Ω
Ok`1

Ok

Uk

Ok´1

Figure 4.4: The sets in the proof of the Meyers-Serrin theorem.

(ii) 0 ď ψkpxq ď 1 for all x P Uk, k P N0;

(iii) if K ĂĂ Ω, then ψkpxq “ 0 in x P K for all but finitely many k P N0;

(iv)
ř8

k“0 ψkpxq “ 1 for all x P Ω.

With this setup, we are now able to prove the approximation result. To this end, pick
u P HmpΩq and let ε ą 0 be given. For fixed k P N0 we have ψku P HmpΩq by the
Leibniz rule (lemma 4.10) and suppψku Ď Uk by (i). In fact, suppψku is compact
(because Uk is bounded), so distpsuppψku, BUkq ą 0 because Uk is open. We can thus
use lemma 4.3 (b) and lemma 4.9 to choose a sufficiently small εk ą 0 such that

supp
`

Jεk ˚ pψkuq
˘

Ď Uk (4.9)

and
||Jεk ˚ pψkuq ´ ψku||HmpUkq ă

ε

2k
. (4.10)

Now set
vε :“

ř8

k“0 Jεk ˚ pψkuq.

Notice that vε P C8pΩq because for any point x P Ω we can choose a neighborhood
K ĂĂ Ω and by (iii) the series then sums over only finitely many nonzero terms,
each of which is C8 in a neighborhood of x itself (cf. theorem 4.5 (a)). Since u “

p
ř8

k“0 ψkqu “
ř8

k“0 ψku by (iv), we find

||vε ´ u||HmpΩq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

Jεk ˚ pψkuq ´

8
ÿ

k“0

ψku

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

HmpΩq

ď

8
ÿ

k“0

||Jεk ˚ pψkuq ´ ψku||HmpΩq

(4.9)
“

8
ÿ

k“0

||Jεk ˚ pψkuq ´ ψku||HmpUkq

(4.10)
ă

8
ÿ

k“0

ε

2k

“ ε.

In particular, this proves vε ´ u P HmpΩq, so vε “ pvε ´ uq ` u P HmpΩq, too. Hence,
setting uk :“ v1{k for k P N yields the desired approximating sequence. ■

51

It is worth noting that the Meyers-Serrin theorem actually allows an alternative defi-
nition of HmpΩq, namely

Hm
pΩq :“ C8pΩq X HmpΩq

where the closure is taken with respect to the || ¨ ||HmpΩq-norm. This is somewhat akin
to how we defined the spaces Hm

0 pΩq in the lecture.
Notice that the approximating smooth functions from the Meyers-Serrin theorem

are only smooth on Ω in general. This means that they could still “blow up” towards
the boundary BΩ (like x ÞÑ 1

x
on Ω :“ s0, 1r for example). As it turns out, preventing

this is only possible when the boundary of the domain is not too irregular (see example
3.20 in [1]). For example, it is possible to show the following density theorem.

Theorem 4.12 Let Ω Ď Rd be a domain with C1 boundary and m P N. Then the set
of restrictions of the functions from C8

c pRdq to Ω is dense in HmpΩq, i. e., for every
u P HmpΩq there exists a sequence pukqkPN in C8

c pRdq such that

||uk ´ u||HmpΩq Ñ 0 as k Ñ 8.

A proof of this important result can be found in Adam’s and Fournier’s book [1,
theorem 3.22], see also section 4.11 there.

Acknowledgments

This text was written in the context of the module Research in Groups - Numerical
Mathematics and Applied Analysis at the University of Würzburg, supervised by Dr.
Eloi Martinet in the summer term of 2024. The course was titled “Finite Element
Methods and Physics Informed Neural Networks”. We would like to thank Philipp
Graser who proofread parts of this document.

References

[1] R. A. Adams and J. J. F. Fournier. Sobolev spaces. 2nd edition. New York:
Academic Press, 2003. doi: 10.1016/S0079-8169(13)62897-4.

[2] H.Amann and J. Escher. Analysis III. Translation from the German by Silvio
Levy and Matthew Cargo. Basel: Birkhäuser, 2009. doi: 10.1007/978-3-
7643-7480-8.

[3] A. Bressan. Lecture notes on functional analysis. With applications to linear
partial differential equations. Providence: American Mathematical Society, 2013.
doi: 10.1090/gsm/143.

[4] J. Cen and Q. Zou. Deep Finite Volume Method for High-Dimensional Partial
Differential Equations. 2024. arXiv: 2305.06863 [math.NA].

[5] N. S. Chauhan. The Role of Physics-Informed Neural Networks in Deep Learn-
ing Evolution. Link accessed on June 30, 2024. Jan. 6, 2023. url: https://
web.archive.org/web/20240712074246/https://www.theaidream.com/

post/theroleof-physics-informed-neuralnetworks-in-deeplearning-

evolution.

52

https://doi.org/10.1016/S0079-8169(13)62897-4
https://doi.org/10.1007/978-3-7643-7480-8
https://doi.org/10.1007/978-3-7643-7480-8
https://doi.org/10.1090/gsm/143
https://arxiv.org/abs/2305.06863
https://web.archive.org/web/20240712074246/https://www.theaidream.com/post/theroleof-physics-informed-neuralnetworks-in-deeplearning-evolution
https://web.archive.org/web/20240712074246/https://www.theaidream.com/post/theroleof-physics-informed-neuralnetworks-in-deeplearning-evolution
https://web.archive.org/web/20240712074246/https://www.theaidream.com/post/theroleof-physics-informed-neuralnetworks-in-deeplearning-evolution
https://web.archive.org/web/20240712074246/https://www.theaidream.com/post/theroleof-physics-informed-neuralnetworks-in-deeplearning-evolution

[6] C. M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. 4th
edition. Berlin: Springer, 2016. doi: 10.1007/978-3-662-49451-6.

[7] L. C. Evans. Partial differential equations. 2nd edition. Providence: American
Mathematical Society, 2010. doi: 10.1090/gsm/019.

[8] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of func-
tions. 2nd revised edition. Boca Raton: CRC Press, 2015. doi: 10.1201/b18333.

[9] J.Glimm. “Solutions in the large for nonlinear hyperbolic systems of equations”.
In: Communications on Pure and Applied Mathematics 18 (1965), pp. 697–715.
doi: 10.1002/cpa.3160180408.

[10] E. Godlewski and P.-A. Raviart. Numerical Approximations of Hyperbolic
Systems of Conservation Laws. 2nd edition. New York: Springer, 2021. doi:
10.1007/978-1-0716-1344-3.

[11] R. J. LeVeque. Numerical methods for conservation laws. 2nd edition. Basel:
Birkhäuser, 1992. doi: 10.1007/978-3-0348-8629-1.

[12] E. H. Lieb and M. Loss. Analysis. 2nd edition. Providence: American Mathe-
matical Society, 2001. doi: 10.1090/gsm/014.

[13] J. D. Logan. An introduction to nonlinear partial differential equations. 2nd edi-
tion. New York, NY: John Wiley & Sons, 2008. doi: 10.1002/9780470287095.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equa-
tions. 2017. arXiv: 1711.10561 [cs.AI].

[15] T. D. Ryck, S. Mishra, and R. Molinaro. wPINNs: Weak Physics informed
neural networks for approximating entropy solutions of hyperbolic conservation
laws. 2022. arXiv: 2207.08483 [math.NA].

[16] J. Smoller. Shock Waves and Reaction-Diffusion Equations. 2nd edition. New
York: Springer, 1994. doi: 10.1007/978-1-4612-0873-0.

[17] E. F. Toro. Shock-capturing methods for free-surface shallow flows. Chichester:
Wiley, 2001.

53

https://doi.org/10.1007/978-3-662-49451-6
https://doi.org/10.1090/gsm/019
https://doi.org/10.1201/b18333
https://doi.org/10.1002/cpa.3160180408
https://doi.org/10.1007/978-1-0716-1344-3
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.1090/gsm/014
https://doi.org/10.1002/9780470287095
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/2207.08483
https://doi.org/10.1007/978-1-4612-0873-0

	1 Introduction
	2 Conservation Laws
	2.1 Derivation of Conservation Laws
	2.2 Existence Theory for One-Dimensional Conservation Laws
	2.2.1 Method of Characteristics
	2.2.2 Weak Solutions
	2.2.3 Existence Results

	2.3 Three Model Conservation Laws
	2.3.1 Linear Advection
	2.3.2 Burgers' Equation
	2.3.3 The Shallow-Water Equations

	3 Numerical Tests
	3.1 Linear Advection Equation
	3.1.1 First Initial Value Problem
	3.1.2 Second Initial Value Problem

	3.2 Burgers' Equation
	3.2.1 First Initial Value Problem
	3.2.2 Second Initial Value Problem

	3.3 Shallow Water Equations
	3.4 Conclusion
	3.5 Outlook
	3.5.1 Predictions Outside of the Training domain
	3.5.2 Two-Dimensional Advection Equation
	3.5.3 Improvements for Higher Accuracy

	4 A Theoretical Result: Smooth Approximation in Sobolev Spaces
	4.1 The Convolution
	4.2 Mollification
	4.3 The Meyers-Serrin Theorem

